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Analytical solution for the Feynman ratchet
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A search for an analytical, closed form solution of the Fokker-Planck equation with periodic, asymmetric
potentials~ratchets! is presented. It is found that logarithmic-type potential functions~related to ‘‘entropic’’
ratchets! allow for an approximate solution within a certain range of parameters. An expression for the net
current is calculated and it is shown that the efficiency of the rocked entropic ratchet is always low.

DOI: 10.1103/PhysRevE.66.061103 PACS number~s!: 05.40.2a, 87.10.1e
h
a
o
tte
om
o
a
n

aw
he
id
g
o

pe
tri

ics
i

a
o

th

at

n
ta
if

te
is

o

fect
ns-
pe-

of

on-
in

er-
on
-
oks
olu-

inal
k
ier,

a
ics
del:
o-

tial
g-
sily
tan-

sily
cu-
d it
iffu-
to

ba-
no
lve
ent
nd
ith

re-
the

th-
on
lar

-

I. INTRODUCTION

In the last decade there has been a lot of interest in p
nomena where concerted action of randomness and caus
come into play. A large body of work exists in the area
fluctuation-induced directed transport: the gist of the ma
is whether thermal fluctuations can help extract energy fr
stochastic processes, which is by no means obvious. In m
cases, no matter how sophisticated the mathematics
physics involved, the principle behind the rectifying motio
is that featured by Feynman’s famous ratchet and p
model @1#. The usefulness of the prototype models of t
ratchet effect becomes apparent when considering w
ranging applications in modern biology and nanotechnolo
These are modeling molecular motors, explanation
‘‘power strokes’’ in muscles, rectification of motion from
random movements, improvements of performance of su
conducting materials, and motion of colloids in asymme
cally structured channels@2–7#.

In accordance with the second law of thermodynam
usable work cannot be extracted in equilibrium conditions
a spontaneous process regardless of how sophisticated
vice we design. However, when the common features
ratchetlike devices are considered, it is well established
with a kind of broken symmetry~space, time, or both! oper-
ating in the presence of nonequilibrium conditions~chemical
reaction, external perturbation, energy dispersion, st
dependent diffusion, correlated noises, etc.!, directed trans-
port can emerge as an intrinsic phenomenon.

In general, the stochastically boosted unidirectional tra
port is related to one of the three main kinds of fundamen
mechanisms:~i! a competition between state-dependent d
fusivity D(x) and forceF(x), ~ii ! external bias, and~iii !
incommensurability. Bu¨ttiker @8#, Magnasco@9#, and Prost,
Ajdari, and co-workers@10#, respectively formulated simple
theoretical models that lie behind each of these effects.

The earlier model by Bu¨ttiker @8# ~see also Landauer@11#!
makes use of periodic functions to describe a specific in
play of deterministic forces and diffusivity. In fact, th
model concerns a quite delicate problem of the state-
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space-dependent diffusion coefficient; sometimes the ef
is referred to as a multiplicative noise. A spontaneous tra
port can appear as a result of a broken balance between
riods of deterministic and diffusive terms. A proper choice
a potentialV(x) and diffusionD(x) may result in an effec-
tive potential that contains a linear term, a source of a c
stant driving force. The primary mechanism for transport
the Büttiker model comes from a phase difference of oth
wise perfectly periodic functions. When a potential functi
tries to localize probability distribution in a place, but diffu
sion opts for other places, the system, being frustrated, lo
for a compromise and sends a current that forbids the s
tion to be unstable.

A real breakthrough in modeling ratchets was the sem
work by Magnasco@9#. The author solved a Fokker-Planc
equation for a simple model for a piecewise potential barr
and derived an exact formula for a net current flowing in
‘‘rocked’’ one-dimensional system. In quantum mechan
one considers a sort of counterpart for the Magnasco mo
it is the Schro¨dinger equation for a particle in a square p
tential well. However, the Schro¨dinger equation allows for
use of a number of physically relevant, smooth poten
functions, while the Smoluchowski equation used by Ma
nasco does not seem to lend itself to this approach ea
@4,5#. Nonetheless, the piecewise barrier has become a s
dard in many approaches for the ratchet effect. It is ea
implemented in numerical analyses; it allows one to cal
late current as a function of an external perturbation; an
encompasses all important issues about the balance of d
sive and ballistic motions. Unfortunately, its drawback is
be rather unphysical.

While models based on that by Magnasco become ‘‘
bies of the family,’’ as far as we know there have been
attempts to use smooth potential functions in order to so
the ratchet problem with periodic potentials. The pres
work attempts to contribute to this field, since having a ki
of analytical solution is like having a reference marker. W
strict solutions to hand one can reasonably compare the
sults of different numerical simulations, and estimate
quality of a simulation.

In this paper we present a potential function of a logari
mic type that offers a quite good analytical approximati
without referring to stepwise forces. Potentials of a simi
form appear in a natural way for ‘‘entropy’’ ratchets~when
higher dimensions are taken into account! as is shown el-
egantly in a recent paper by Braun@12# ~see also Ref.@13#!.
©2002 The American Physical Society03-1
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We believe it is one of the few attempts to date to find
approximation of an analytical solution~with an arbitrary
accuracy, when necessary! for an asymmetric ratchet poten
tial.

II. OUTLINE OF THE PROBLEM

We consider a simple model of a massless single par
diffusing along one dimension in the presence of asymme
potential with periodp, V(x)5V(x1p). In order to refer to
other studies of overdamped motion, we argue that such
approach is traditionally based on the reduced Lange
equation

ẋ5F~x!1AD~x!j~ t !, ~1!

wherex stands for a position of a moving particle, the fri
tion constant is set to 1, and the deterministic forceF(x)
52dV/dx. Random forcesj(t) have properties of white
noise, i.e., ^j(t)&50 and ^j(t)j(t8)&52D0d(t2t8). In
what follows we assume also no state-dependent diffus
D(x)5D0.

In general, this problem as stated in terms of the Lange
equation, can be converted into an analysis of the Fok
Planck~or rather Smoluchowski! equation. Then, the task i
to find the probability density function,P(x,t),

]P

]t
5

]

]x H D0

]P

]x
2F~x!PJ . ~2!

Equation~2! can be written as a continuity equation,]P/]t
52]J/]x, with the density current

J52D0

]P

]x
1F~x!P. ~3!

For a steady state, with the probability being the function
position only,P(x,t)5P(x), a nonzero current can flow as
result of balance between the regular force and diffusi
dependent terms.

In general, it is well known that potential forces try
localize particles in places where the potential function
minima. The probability of finding such minima scales wi
the Boltzmann factor exp@2V(x)/D0#, and all the main prob-
ability function features come from the shape of the pot
tial.

An alternative mechanism for the ratchet transport is d
to Magnasco@9#. This ‘‘rocked’’ ratchet is driven by a time-
dependent external forcef (t) that may be represented as
slowly changing~square or sinusoidal! signal rocking the
ratchet left and right. The external bias may be introduc
into the Smoluchowski equation by simply adding its amp
tude to the original forceF(x). Then, the equation for the
current reads

J52D0

]P

]x
1@F~x!1 f #P. ~4!

Note that in Eq.~4! the external forcef is now time indepen-
dent. Magnasco’s approach, while convincing and eleg
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treats this equation in two regions in which determinis
forces are simply constants of opposite signs and have
nificantly different values. In this paper we propose a diff
ent potential function~and mention a class of similar func
tions! that does not suffer from such violent jumps in for
values. It is smooth, physically reliable, and~for a properly
tuned parameters! analytically feasible.

In what follows we assume a potential function in th
form of logarithm

V~x!5V0ln$A1G̃~x!%, ~5!

whereV0 is the amplitude of the potential,A is an arbitrary
constant, andG̃(x) introduces asymmetry and is similar t
the equation for an asymmetric potential~A1! ~see Appendix
A!.

In particular, we chooseG̃(x) in the form

G̃~x!5ã
d

dx
ln@b̃1g̃ cos2~x!#, ~6!

whereã, b̃ and g̃ are constants.
Such an asymmetric function can serve as a ‘‘co

potential’’ model since every monotonic function ofG̃(x) is
also an asymmetric one. As any potential is always defi
with an accuracy up to a constant, we can remove dep
dence ofV(x) on A and b̃ ~or simply put their values equa
to 1!. In effect, the potential we are considering has the fo

V~x!5V0ln$11G~x!% ~7!

with

G~x!5a
d

dx
ln$11g cos2~x!%52

2ag sin~x!cos~x!

11g cos2~x!
~8!

depending on three parameters only. Examples of poten
functions of this kind are presented in Fig. 1 for differe

FIG. 1. A plot of the reduced potential functionV(x)/V0

(V0510) as a function of positionx for different values of param-
eters. From bottom to top: ~a! a520.1, g520.1;
~b! a520.05, g520.3; ~c! a520.1, g520.8.
3-2
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ANALYTICAL SOLUTION FOR THE FEYNMAN RATCHET PHYSICAL REVIEW E66, 061103 ~2002!
values of the shape parameter. Note that an effective po
tial in the form of the logarithm of an oscillating functio
was recently derived by Braun@12# for entropic barriers tha
hinder the motion of atoms on a metal surface. Earlier C
chi and Magnasco@13# referred toentropic ratchetsin a
construction of a two-dimensional asymmetric potential c
taining also a logarithmic term.

III. AN APPROXIMATE SOLUTION TO A SMOOTH
RATCHET POTENTIAL

General methods of solving the Fokker-Planck equati
are described in depth by Risken@14#. In our case, solving
Eq. ~4! with potential ~7! yields the following probability
densityP(x):

P~x!5H (2)~x!exp~wx!H P02 j E
0

x

H (1)~x8!

3exp~2wx8!dx8J . ~9!

In Eq. ~9! H (6)(x)5@11G(x)#6m, m5V0 /D0 , w
5 f /D0 , j 5J/D0, andP0 stands for an initial value of this
probability density.

There are no analytical solutions of Eq.~4! expressed in
terms of elementary functions whenF(x) is obtained as a
derivative of smooth periodic asymmetric potentials.

Here we propose a way of solving algebraic functio
appearing in Eq.~9!: we take advantage of a kind of th
series expansion for limited values of parameters appea
in Eq. ~9!. Namely, we expandH (6)(x)5@11G(x)#6m in
terms of the shape parameterg when ugu,1 and uau,1.
Such an approach offers a rather good approximation for
exponentiated potential function, therefore one can exp
that integrals calculated within this approximation are r
sonably close to the exact solution. In principle, an ex
solution can be represented in the form of an infinite conv
gent series.

The expansion of the integrating factorH (2)(x) reads

H (2)~x!511 (
n51

`

Snsinn~2x!

3H 11 (
m5n

`

(
k50

m2n11

Cnmkcosk~2x!J , ~10!

where

Sn5
~m!n

n!
~ag!n, ~10a!

Cnmk5
m! ~2g!m2n11

~n21!!k! ~m2n2k11!!
, ~10b!

and (m)n stands for Pochhammer’s symbol@15#,

~m!n5m~m11!•••~m1n21!5
G~m1n!

G~m!
. ~10c!
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On the other hand, in the expansion~10! products and
powers of trigonometric functions can be expressed in te
of higher harmonics of even multiples ofx. Therefore, the
series may have the following form:

H (2)~x!5h0
(2)1 (

k51

`

$s2k
(2)sin~2kx!1c2k

(2)cos~2kx!%,

~11!

where

h0
(2)511

~m!2

4
a2g2H 12g1

15

16
g22

7

8
g31

105

128
g4J

1a4g4
~m!4

64 H 122g1
35

12
g2J 1a6g6

~m!6

2304
.

~11a!

In passing from the form~10! to Eq. ~12! a rather trivial
algebra is involved, therefore we show explicitly only se
eral coefficientss2k

(2) andc2k
(2) of the series~12! in Appendix

B.
A similar kind of expansion can be performed for the te

H (1)(x) @under the integral sign in Eq.~9!#. The functions
h0

(1) and the coefficientss2k
(1) and c2k

(1) are easily obtained
from h0

(2) and s2k
(2)and c2k

(2) through the obvious change o
m→2m, respectively.

With the help of this expansion the integral appearing
Eq. ~9!,

C~x!5E
0

x

H (1)~x8!exp~2wx8!dx8 , ~12!

can be calculated by means of elementary functions and
be also expressed in the form of a series

C~x,w!5
h0

(1)

w
@12exp~2wx!#1V~x,w!exp~2wx!

2V~0,w!, ~13!

where

V~x,w!5 (
k51

$s2ksin~2kx!1j2kcos~2kx!% ~14!

with coefficients

s2k5
2kc2k

(1)2ws2k
(1)

w21~2k!2
,

j2k52
2ks2k

(1)1wc2k
(1)

w21~2k!2
. ~15!

The solution of Eq.~9! then reads
3-3
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PESZ, GABRYŚ, AND BARTKIEWICZ PHYSICAL REVIEW E 66, 061103 ~2002!
P~x;w!5H (2)~x!H P0ewx2 j Fh0
(1)

w
~ewx21!1V~x;w!

1V~0;w!ewxG J . ~16!

With this formula at hand, we can calculate the two u
known quantitiesP0 and j using two conditions~periodicity
and normalization!:

P~0;w!5P~p;w!, ~17a!

E
0

p

P~x!dx51. ~17b!

Therefore, within arbitrarily good accuracy the probab
ity and the current are given by

P~x;w!5 jH (2)~x!H h0
(1)

w
2V~x;w!J , ~18!

j ~w!5
w

ph0
(2)h0

(1)2wF~w!
, ~19!

respectively. The integral

F~w!5E
0

p

H (2)~x!V~x,w!dx ~20!

can be also represented as the series

F~w!5
p

2 ( @s2k
(2)s2k~w!1c2k

(2)j2k~w!#. ~21!

The structure of coefficients allows for splittingF into
even and odd partsF5p(Feven1Fodd):

Feven5 (
k51

k

w21~2k!2
$s2k

(2)c2k
(1)2c2k

(2)s2k
(1)%, ~21a!

FIG. 2. Steady currentj 5J/D0 @Eq. ~19!# vs reduced rocking
force amplitude f5 f /D0 for the asymmetric potentialV(x),
Eq. ~7!, and order of expansionn56. Parameters used:D050.1,
a520.3, g520.2, V051.5.
06110
-

Fodd52
1

2 (
w

w21~2k!2
$s2k

(2)s2k
(1)1c2k

(2)c2k
(1)%,

~21b!

and Eq.~19! can be rewritten in a more symmetric form

j 5
1

p

w2Feven~w!

$h0
(2)h0

(1)2wFodd~w!%22$wFeven~w!%2
. ~22!

The dependence of the net fluxj Eq. ~19! or ~22!, as a func-
tion of the reduced amplitude of the rocking forcef is pre-
sented in Fig. 2. Several calculations show that the m
symmetrical and smooth the potential is, the lesser is
effect of the net current. In principle, the steady current giv
by Eq. ~19! can become infinite when a particular combin
tion of the expansion coefficients in the denominator b
comes zero. We investigated this possibility for several co
binations of parameters@cf. Eq. ~9!# but have not detected
this irregularity. The influence of the shape function and d
ferent range of parameters on the probability density fu
tion, thus ultimately on values of the current, which cou
lead to a ‘‘resonance’’ singularity is postponed for furth
investigation.

Figure 3 shows how the probability density function shi
in a ~slightly! asymmetric potential when a net current flow

FIG. 3. Comparison of probability density with zero curre
~dash-dotted line! with probability density shifted in the presence
the net current~dashed line!. ~a! Boltzmann factor given by a start
ing potential, Eq.~7!; ~b! probability density shifted to the right in
the presence of net ratchet current caused by a rocking forc
amplitude f50.22, Eq. ~18!; ~c! the reduced potential function
V(x)/V0.

FIG. 4. Check of accuracy of the solution of Eq.~4!. A constant
value of a currentj ~straight line! as compared with the right side o
Eq. ~4! ~parameters used have the same values as those for Fig!.
3-4
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ANALYTICAL SOLUTION FOR THE FEYNMAN RATCHET PHYSICAL REVIEW E66, 061103 ~2002!
@the right-shifted curve described by Eq.~18!#. The present
approximation to the calculation of smooth ratchet effe
seems to be quite reasonable. In Fig. 4 the reduced form
Eq. ~4! ~meaning all quantities are normalized byD0) is
plotted. The only~small! discrepancies between the left sid
~constant! and right side~which still is a function ofx) are
noticeable in places of potential twists. The stability of t
calculated net current depends on the number of terms ta
in the series expansion, and it also depends on how sym
ric, or asymmetric, is the potential. For a more symme
potential, the current approaches a constant value faster
for an asymmetric one, however in both cases the inclus
of only few terms gives a good approximation.

To have an idea of how details of ratchet potentials aff
the overall effects of unidirectional motions, we tried to co
pare our results with those given by Magnasco@9#. Already
at the beginning, when we start from ratchet potentials,
straightforward comparison is possible: we have to take
ther the same amplitudes or the same tilts. It is much m
reasonable to assume the same slopes and the same p

FIG. 5. A rough approximation of the smooth ratchet poten
ratchet,V(x)/V0, as a function of positionx, with a piecewise con-
struction considered by Magnasco. For comparison, both poten
have the same slopes rather than amplitudes.a520.3, g520.2,
V051.5.

FIG. 6. Comparison of net currentsj 5J/D0 for compatible
piecewise and smooth potentials~cf. Fig. 5!. The smoothness of the
potential reduces significantly the net current effect~up to several
orders of magnitude!.
06110
s
of

en
et-
c
an
n

t
-

o
i-
re
iods

~with a greater amplitude! as demonstrated in Fig. 5, tha
amplitudes. We obtain the net current almost two ord
smaller for a smooth ratchet than in the case of a piecew
potential function~Fig. 6!. It is noticeable again how the
smoothness of the potential radically diminishes the net c
rent. With an expression for the current at hand, we can a
calculate the efficiency of the smooth ratchet. A handy
pression for efficiency is given in Ref.@16#,

h5
1

w

12u j ~2w!/ j ~w!u
11u j ~2w!/ j ~w!u

. ~23!

The resulting efficiency is shown in Fig. 7. One can s
that the efficiency of this kind of rocked ratchet is qui
small, in agreement with the results obtained by other wo
ers.

IV. CONCLUSIONS

In this paper we presented an alternative approach to
gnasco’s ‘‘exact’’ solution of the ratchet potential model@9#.
We chose a particular type of a potential function that wo
allow for a series expansion due to the shape parameter.
function is of logarithmic type. Its shape can be justified
grounds similar to those used by Braun@12# in describing
two-dimensional diffusion on a surface: logarithmic potent
functions are characteristic for ‘‘entropic’’ ratchets.

It seems that the entropic, rocked ratchets suffer from
toriously low efficiency@17#. This is confirmed also in the
present investigation—smooth potentials cannot provide
net currents. In this respect, it appears that ratchets wi
position-dependent diffusivity~or multiplicative noise! may
yield much more efficient devices.
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FIG. 7. Efficiency h of the smooth ratchet as a function o
reduced rocking forcef5 f /D0.
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APPENDIX A

Let us note that smooth potentials met in ratchet proble
are frequently related to logarithmic functions. For examp
an asymmetric potential of the ‘‘tooth’’ used by Magnas
and Stolovitzky@18#,

VMS~x!5V0

sin~x!cos~x!

11g cos2~x!
, ~A1!

is obtained as a derivative of a logarithmic function:

VMS~x!5
V0

2g

d

dx
ln@11g cos2~x!#. ~A2!

Another popular ratchet potential

V~x!5V0H sin~x!1
1

4
sin~2x!J ~A3!

can be viewed as a sum of first two terms in a Fourier se
that appears to be the Clausen function~an integral of the
logarithm! @15#,

2E
0

2x

ln@2sin~s!#ds5 (
k51

`
sin~2kx!

k2
, ~A4!

VC~x!5 (
k51

`
sin~2kx!

k2
. ~A5!

The force for this potential reads
06110
s
,

s

F~x!5 lnusin~2x!u12 ln 2. ~A6!

Although it can be written as a simple elementary functio
there is no real analytical benefit, for the Boltzmann facto
still given by

expS 2E ln@sin~x!# D .

Another simpler function, very similar in shape to th
Clausen function, is

V~x!5V0tan~x!ln@sin2~x!#, ~A7!

or, in a more symmetric form,

V~x!5V0

d

dx
$ ln@sin2~x!# ln@cos2~x!#%. ~A8!

Although the potentials~A7! and ~A8! look rather simple,
their application is limited since they produce singularities
forces and probabilities.

APPENDIX B

The coefficients appearing in Eq.~11! can be easily cal-
culated by using a binomial formula. However, as there
positive and negative contributions, the general formulas
lengthy and contain many sums of sums. Therefore we p
vide here explicit formulas for coefficients up to ord
O(g7):
s2
(2)5ag~m!1F12

1

2
g1

5

16
g22

7

32
g31

21

128
g42

33

256
g5G1

a3g3~m!3

8 F12
3

2
g2

15

8
g2G1

a5g5~m!5

192 F12
5

2
gG ,

s4
(2)52

ag2

4 H ~m!1F12g1
7

8
g22

3

4
g31

165

256
g4G1

a2g2~m!3

4 F122g1
45

16
g2G1

5a4g4~m!5

384 J ,

s6
(2)5

ag3

16 H ~m!1F12
3

2
g1

27

16
g22

55

32
g3G2

2a2~m!3

3 F12
3

2
g1

9

8
g2G2

a2g2~m!5

48 F12
5

2
gG J ,

s8
(2)52

ag4

64 H ~m!1F122g1
11

4
g2G22a2~m!3F122g1

5

2
g2G2

a4g2~m!5

6 J ,

s10
(2)5

ag5

256 H @~m!124a2~m!3#F12
5

2
gG2

15a4~m!5

2 F12
2

45
gG J , s12

(2)52
ag6

1024H ~m!12
20a2~m!3

3
1

2~m!5

3 J ,

c2
(2)52

a2g3

8 H ~m!2F12
3

2
g1

7

4
g22

5

8
g3G1

a2g2~m!4

12 F12
15

2
gG2

a2g2~m!6

360 J ,

c4
(2)5

a2g2

4 H ~m!2F12g1
3

4
g22

1

2
g31

75

256
g4G1

a2g2~m!4

12 F122g1
85

384
g2G1

17a4g4~m!6

5760 J ,

c6
(2)5

a2g3

8 H ~m!2F12
3

2
g1

13

4
g22

25

16
g3G1

a2g2~m!4
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