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Analytical solution for the Feynman ratchet
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A search for an analytical, closed form solution of the Fokker-Planck equation with periodic, asymmetric
potentials(ratchet$ is presented. It is found that logarithmic-type potential functice$ated to “entropic”
ratchet$ allow for an approximate solution within a certain range of parameters. An expression for the net
current is calculated and it is shown that the efficiency of the rocked entropic ratchet is always low.
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[. INTRODUCTION space-dependent diffusion coefficient; sometimes the effect
is referred to as a multiplicative noise. A spontaneous trans-
In the last decade there has been a lot of interest in phdort can appear as a result of a broken balance between pe-
nomena where concerted action of randomness and causalftipds of deterministic and diffusive terms. A proper choice of
come into play. A large body of work exists in the area of@ PotentialV(x) and diffusionD(x) may result in an effec-
fluctuation-induced directed transport: the gist of the matteflVe Potential that contains a linear term, a source of a con-
is whether thermal fluctuations can help extract energy fronpt@nt driving force. The primary mechanism for transport in
stochastic processes, which is by no means obvious. In mog?.e Butiker model comes from a phase difference of other-

cases, no matter how sophisticated the mathematics arﬁﬂ‘se perfectly periodic functions. When a potential function

hysics involved, the principle behind the rectifying motion les to localize probability distribution in a place, but diffu-
phy ’ P P ) 9 ion opts for other places, the system, being frustrated, looks
is that featured by Feynman's famous ratchet and paw.

or a compromise and sends a current that forbids the solu-
model [1]. The usefulness of the prototype models of the;on o be unstable.

ratchet effect becomes apparent when considering wide- A yea| breakthrough in modeling ratchets was the seminal
ranging applications in modern biology and nanotechnologyy,qrk by Magnascd9]. The author solved a Fokker-Planck
These are modeling molecular motors, explanation ogquation for a simple model for a piecewise potential barrier,
“power strokes” in muscles, rectification of motion from and derived an exact formula for a net current flowing in a
random movements, improvements of performance of supefrocked” one-dimensional system. In quantum mechanics
conducting materials, and motion of colloids in asymmetri-one considers a sort of counterpart for the Magnasco model:
cally structured channe(2-7]. it is the Schrdinger equation for a particle in a square po-
In accordance with the second law of thermodynamicstential well. However, the Schdinger equation allows for
usable work cannot be extracted in equilibrium conditions inuse of a number of physically relevant, smooth potential
a spontaneous process regardless of how sophisticated a denctions, while the Smoluchowski equation used by Mag-
vice we design. However, when the common features ohasco does not seem to lend itself to this approach easily
ratchetlike devices are considered, it is well established thgi4,5]. Nonetheless, the piecewise barrier has become a stan-
with a kind of broken symmetryspace, time, or bojfoper-  dard in many approaches for the ratchet effect. It is easily
ating in the presence of nonequilibrium conditidobemical  implemented in numerical analyses; it allows one to calcu-
reaction, external perturbation, energy dispersion, statdate current as a function of an external perturbation; and it
dependent diffusion, correlated noises, jetdirected trans-  encompasses all important issues about the balance of diffu-
port can emerge as an intrinsic phenomenon. sive and ballistic motions. Unfortunately, its drawback is to
In general, the stochastically boosted unidirectional transbhe rather unphysical.
port is related to one of the three main kinds of fundamental While models based on that by Magnasco become “ba-
mechanisms(i) a competition between state-dependent dif-bies of the family,” as far as we know there have been no
fusivity D(x) and forceF(x), (i) external bias, andiii)  attempts to use smooth potential functions in order to solve
incommensurability. Bitiker [8], Magnascd9], and Prost, the ratchet problem with periodic potentials. The present
Ajdari, and co-worker$10], respectively formulated simple work attempts to contribute to this field, since having a kind
theoretical models that lie behind each of these effects.  of analytical solution is like having a reference marker. With
The earlier model by Bitiker [8] (see also Landau¢tl])  strict solutions to hand one can reasonably compare the re-
makes use of periodic functions to describe a specific intersults of different numerical simulations, and estimate the
play of deterministic forces and diffusivity. In fact, this quality of a simulation.
model concerns a quite delicate problem of the state- or In this paper we present a potential function of a logarith-
mic type that offers a quite good analytical approximation
without referring to stepwise forces. Potentials of a similar

*Deceased form appear in a natural way for “entropy” ratchetghen
TCorresponding author. FAX:+44-1865-736288. Electronic ad- higher dimensions are taken into accouas is shown el-
dress: b.j.gabrys@open.ac.uk egantly in a recent paper by Bra{itb?] (see also Ref.13)).
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We believe it is one of the few attempts to date to find an ©
approximation of an analytical solutiofwith an arbitrary 0.001 r

accuracy, when necessaffgr an asymmetric ratchet poten- 0
tial. -0.001 1

>
>

(o)

II. OUTLINE OF THE PROBLEM 0.003

We consider a simple model of a massless single particle -0.003 |

diffusing along one dimension in the presence of asymmetric

Potential, V(x)/Vy
o

. . . (a)
potential with periodr, V(x) =V(x+ 7). In order to refer to 0.003 |
other studies of overdamped motion, we argue that such an 0 /_\ /_\
approach is traditionally based on the reduced Langevin -0.003 | \_/
equation 0 1 2 3 4 5 6
. X
x=F(x)+VD(x)&(1), ()

FIG. 1. A plot of the reduced potential functioX(x)/V,
wherex stands for a position of a moving particle, the fric- (Vo=10) as a function of positior for different values of param-
tion constant is set to 1, and the deterministic foFx) ~ eters. From bottom to top:(@ a=-0.1, y=-0.1;
=—dV/dx. Random forcest(t) have properties of white (b) a=—0.05,y=-0.3;(c) a=-0.1, y=-0.28.
noise, i.e.,(&(t))=0 and (&(t)&(t")y=2Dys(t—t'). In
what follows we assume also no state-dependent diffusiorieats this equation in two regions in which deterministic
D(x)=D,. forces are simply constants of opposite signs and have sig-

In general, this problem as stated in terms of the Langevirificantly different values. In this paper we propose a differ-
equation, can be converted into an analysis of the Fokke€nt potential functiorfand mention a class of similar func-
Planck(or rather Smoluchowskiequation. Then, the task is tions) that does not suffer from such violent jumps in force

to find the probability density functior®(x,t), values. It is smooth, physically reliable, affér a properly
tuned parameteranalytically feasible.
P 9 P In what follows we assume a potential function in the
5 ax DOQ_F(X)P - (2 form of logarithm

Equation(2) can be written as a continuity equatiar?/at V(x)=VoIn{A+G(x)}, )

= —dJ/dx, with the density current

whereV, is the amplitude of the potentiad\ is an arbitrary

constant, ands(x) introduces asymmetry and is similar to

the equation for an asymmetric potentiall) (see Appendix

A).

For a steady state, with the probability being the function of

position only,P(x,t) =P(x), a nonzero current can flow as a

result of balance between the regular force and diffusion- _ ~d - _

dependent terms. G(x)=ag In[B+y cos(x)], (6)
In general, it is well known that potential forces try to

Iogqlize particles in p_laces yvh_ere the pot_er_1tia| function .ha%vhere'&, % andy are constants.

minima. The probability of finding such minima sc_ales with Such an asymmetric function can serve as a “core-

the Boltzmann factor eXp-V(x)/Dy], and all the main prob- o , ) .~ )

ability function features come from the shape of the potenPOtential” model since every monotonic function 6{x) is

tial. also an asymmetric one. As any potential is always defined
An alternative mechanism for the ratchet transport is dudVith @n accuracy up to a constant, we can remove depen-

to Magnascq9]. This “rocked” ratchet is driven by a time- dence ofV(x) on A and g (or simply put their values equal

dependent external forcit) that may be represented as ato 1). In effect, the potential we are considering has the form

slowly changing(square or sinusoidalsignal rocking the

ratchet left and right. The external bias may be introduced V(x)=VoIn{1+G(x)} 7

into the Smoluchowski equation by simply adding its ampli- .

tude to the original forcd-(x). Then, the equation for the with

current reads

P
J=—Do—+F(X)P. (3)

In particular, we choosé(x) in the form

2ay sin(x)cogx)

_ d I =
G(x)=a g In{1+ycos(x)}=—

J=—Doj—z+[F(x)+f]P. (4) 1+ ycog(x) ®

Note that in Eq(4) the external forcé is now time indepen- depending on three parameters only. Examples of potential
dent. Magnasco’s approach, while convincing and eleganfunctions of this kind are presented in Fig. 1 for different
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values of the shape parameter. Note that an effective poten- On the other hand, in the expansi¢h0) products and
tial in the form of the logarithm of an oscillating function powers of trigonometric functions can be expressed in terms
was recently derived by Brayi 2] for entropic barriers that of higher harmonics of even multiples &f Therefore, the
hinder the motion of atoms on a metal surface. Earlier Cecseries may have the following form:

chi and Magnascq13] referred toentropic ratchetsin a
construction of a two-dimensional asymmetric potential con-

taining also a logarithmic term.

Ill. AN APPROXIMATE SOLUTION TO A SMOOTH
RATCHET POTENTIAL

HOY(x)=h{+ >, {sb)sin(2kx) +cb, ) cog 2kx)},
=]
(11

where

General methods of solving the Fokker-Planck equations

are described in depth by Riskéb4]. In our case, solving
Eqg. (4) with potential (7) yields the following probability
densityP(x):

P(X)=H(’(X)eXD(QDX){Po—jf:H‘”(X’)

9

- (®)2 15, 7 105
(-)— M2 2 2] 4 Y I Wik
hg 1+ i 1-y+ 16 5”7 + 1287
()4 35 (w6
4.4 _ oY 2 6.6
+a™y 6a 1-2 +12)/ +a)/2304.

(118

In passing from the forn{10) to Eq. (12) a rather trivial

Xexp — <px’)dx’J .
algebra is involved, therefore we show explicitly only sev-

eral coefficientss},) andc$, ) of the serieg12) in Appendix

B.

A similar kind of expansion can be performed for the term
H{)(x) [under the integral sign in Eq9)]. The functions
h{") and the coefficients!;’ andc},’ are easily obtained
from h{") ands),’andc,’ through the obvious change of

In Eq. (9 HOX)=[1+G(X)]"* u=Ve/Dg, ¢
=f/Dg, j=J/Dy, andP, stands for an initial value of this
probability density.

There are no analytical solutions of Ed) expressed in
terms of elementary functions whdf(x) is obtained as a
derivative of smooth periodic asymmetric potentials. s

Here we propose a way of solving algebraic functions#— — &, respectively. , _ o
appearing in Eq(9): we take advantage of a kind of the With the help of this expansion the integral appearing in
series expansion for limited values of parameters appearinﬁq- ),
in Eq. (9). Namely, we expandd(*)(x)=[1+G(x)]™* in
terms of the shape parametgrwhen|y|<1 and|a|<1.

Such an approach offers a rather good approximation for the
exponentiated potential function, therefore one can expect

that integrals calculated within this approximation are reacan be calculated by means of elementary functions and can
sonably close to the exact solution. In principle, an exache also expressed in the form of a series

solution can be represented in the form of an infinite conver-

gent series. h(H)

The expansion of the integrating factdf ~)(x) reads V(X @)= OT[l—exp(— ©X) ]+ Q(X, p)exp — ¢X)

\If(x)=jOXH(+)(x’)exq—¢x’)dx’, (12)

HO(X)=1+ >, S,sin(2x) - Q(0,¢), (13)
n=1
o m-n+1 where
X{1+ 2 > Comcos(2x)(, (10
=n k=0 _
=n Q(x,¢)=k§l {oSIN(2kX) + £c0d2kx)}  (14)
where
() with coefficients
n
Sn=T(a7)“, (10a
kel oy
m!(— m—n+1 2k_ﬁ
Comi= (=) , (10b) e+ (2k)
(n=D)!kI(m—=n—Kk+1)!
(+) (+)
and (u), stands for Pochhammer’s symtalb], o= — 2ksoi”+ ¢Cx (15)
2 2
I'(u+n) o7+ (2K)
(00

(n=plpt1)-(ptn=1)= T'(w) The solution of Eq(9) then reads
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h(+)
0 oX .
T(e —1)+Q(x;9)

P(X; @)= H(_)(X)[ Poe?* ]

|

With this formula at hand, we can calculate the two un-
known quantitiesP, andj using two conditiongperiodicity
and normalization

Q(0;p)e™ (16)

P(0;¢0)=P(m;¢), (179

JWP(x)dx= 1. (17h)
0

Therefore, within arbitrarily good accuracy the probabil-
ity and the current are given by

h{H
P(x;qo)=jH(‘)(X){T—Q(x;so)], (18)
. ®
= , 19
O e (e) 9
respectively. The integral
D (0)= [ THOO 0 )ax (20
0
can be also represented as the series
O(p)=5 2 S o9 e el @] (D)

The structure of coefficients allows for splitting into
even and odd part® = 7(P g ent Pogd):

e —cbsGr

>

K1 @ +(2k)2

Dopen= 2 —5 {5’ '}, (218
0.001
0.0008
0.0006 |

0.0004 |

Steady current, |

0.0002 |

0.5 1 1.5 2 25 3
Reduced rocking force amplitude, ¢

0
0

FIG. 2. Steady current=J/D, [Eg. (19)] vs reduced rocking
force amplitude ¢=f/D, for the asymmetric potentiaV(x),
Eq. (7), and order of expansion=6. Parameters use,=0.1,
a=-0.3, y=-0.2,Vy=15.
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Prob. density

FIG. 3. Comparison of probability density with zero current
(dash-dotted linewith probability density shifted in the presence of
the net currentdashed ling (a) Boltzmann factor given by a start-
ing potential, Eq(7); (b) probability density shifted to the right in
the presence of net ratchet current caused by a rocking force of
amplitude $=0.22, Eq.(18); (c) the reduced potential function
V(x)/V,.

————{s5)sh)+ ¢S

S %
(21b

1
() = — —
odd 22 ® +(2k)2

and Eq.(19) can be rewritten in a more symmetric form

E ‘qu)euen(‘P)
7 {h$h$H = 0@ 4o 0) 12— { 9D epen( @)}

The dependence of the net fliEq. (19) or (22), as a func-
tion of the reduced amplitude of the rocking forgeis pre-
sented in Fig. 2. Several calculations show that the more
symmetrical and smooth the potential is, the lesser is the
effect of the net current. In principle, the steady current given
by Eg.(19) can become infinite when a particular combina-
tion of the expansion coefficients in the denominator be-
comes zero. We investigated this possibility for several com-
binations of parameteref. Eq. (9)] but have not detected
this irregularity. The influence of the shape function and dif-
ferent range of parameters on the probability density func-
tion, thus ultimately on values of the current, which could
lead to a “resonance” singularity is postponed for further
investigation.

Figure 3 shows how the probability density function shifts
in a (slightly) asymmetric potential when a net current flows

= (22

0.06
rh.s. ofeq. (4) ——
-2 const. value of the current, j -------
o 0055
5
O
0.05

6 10 12
X
FIG. 4. Check of accuracy of the solution of E¢). A constant
value of a curreng (straight ling as compared with the right side of

Eq. (4) (parameters used have the same values as those for)Fig. 2

061103-4



ANALYTICAL SOLUTION FOR THE FEYNMAN RATCHET PHYSICAL REVIEW E66, 061103 (2002

133 smooth ratchet potenial 0.08
piecewise construction -------
0.1 r 007
0.06 |
o 067
i = 0.05
> K -
< o033f 5
] S 004
g 0 3
g o 003}
£ -033 .
-0.67 | 3 N/ 002 |
. "" 0.01 |
1 v ‘V
0 1 2 3 4 5 g 7 0 01 02 03 04 05 06 07 08 09 1

Rocking force ¢

FIG. 5. A rough approximation of the smooth ratchet potential FIG. 7. Efficiency » of the smooth ratchet as a function of
ratchet,V(x)/V,, as a function of positio®, with a piecewise con- reduced rocking forces=f/Dy.
struction considered by Magnasco. For comparison, both potentials 0

have the same slopes rather than amplitudes—0.3, y=—0.2, ) ) L
Vo=1.5. (with a greater amplitudeas demonstrated in Fig. 5, than

amplitudes. We obtain the net current almost two orders
[the right-shifted curve described by E{.8)]. The present smaller for a smooth ratchet than in the case of a piecewise
approximation to the calculation of smooth ratchet effectgpotential function(Fig. 6). It is noticeable again how the
seems to be quite reasonable. In Fig. 4 the reduced form gmoothness of the potential radically diminishes the net cur-
Eqg. (4) (meaning all quantities are normalized By) is  rent. With an expression for the current at hand, we can also
plotted. The onlysmall discrepancies between the left side calculate the efficiency of the smooth ratchet. A handy ex-
(constank and right side(which still is a function ofx) are  Pression for efficiency is given in Relf16],
noticeable in places of potential twists. The stability of the

calculated net current depends on the number of terms taken 11-[ji(—¢)j(e)]
in the series expansion, and it also depends on how symmet- n=— . i d i . (23)
ric, or asymmetric, is the potential. For a more symmetric ¢ 1+]i(—e)j(e)l

potential, the current approaches a constant value faster than The resulting efficiency is shown in Fig. 7. One can see
for an asymmetric one, however in both cases the inclusiothat the efficiency of this kind of rocked ratchet is quite
of only few terms gives a good approximation. small, in agreement with the results obtained by other work-
To have an idea of how details of ratchet potentials affec€rs.
the overall effects of unidirectional motions, we tried to com-
pare our results with those given by Magna$gp Already
at the beginning, when we start from ratchet potentials, no
straightforward comparison is possible: we have to take ei-
ther the same amplitudes or the same tilts. It is much more In this paper we presented an alternative approach to Ma-

reasonable to assume the same slopes and the same peri@f§sco’s “exact” solution of the ratchet potential mog.
We chose a patrticular type of a potential function that would

IV. CONCLUSIONS

smooth ratchet potenial allow for.a series expar)sion due to the shape paramg_ter. This
0012 1 piecewise construction function is of logarithmic type. Its shape can be justified on
0.01 | grounds similar to those used by Bra[t2] in describing
’ two-dimensional diffusion on a surface: logarithmic potential
5 0008 - functions are characteristic for “entropic” ratchets.
5 / It seems that the entropic, rocked ratchets suffer from no-
3 0.006 | toriously low efficiency[17]. This is confirmed also in the
z ',"' \ present investigation—smooth potentials cannot provide big
0.004 1 net currents. In this respect, it appears that ratchets with a
/ position-dependent diffusivityor multiplicative nois¢ may
0.002 1 yield much more efficient devices.
0 —— :
0 0.5 1 15 2 2.5
Rocking force, ¢ ACKNOWLEDGMENTS
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APPENDIX A F(x)=In|sin(2x)|+2 In2. (A6)

Let us note that smooth potentials met in ratchet problem
are frequently related to logarithmic functions. For example
an asymmetric potential of the “tooth” used by Magnasco
and Stolovitzky[18],

., sin(x)cogx) exp{ - In[sin(x)]).
VMS(X)—Vo—l+ 0%’ (A1) f

ilthough it can be written as a simple elementary function,
there is no real analytical benefit, for the Boltzmann factor is
still given by

_ . L o _ Another simpler function, very similar in shape to the

is obtained as a derivative of a logarithmic function: Clausen function. is
Vo d .

Vys(X)= 2—; L+ v cog(0)]. (A2) V(x) = Votan(x)In[sir(x)], (A7)

. or, in a more symmetric form,
Another popular ratchet potential y

d
V(x)=V0[sin(x)+ %Sm(ZX)] (A3) V(0 =Vog{In[sif(x) In[cog(x) ]} (A8)

can be viewed as a sum of first two terms in a Fourier serieélthough the potentialsA7) and (A8) look rather simple,
that appears to be the Clausen functi@m integral of the their application is limited since they produce singularities in

logarithm) [15], forces and probabilities.
2% i
—f In[2sin( o) Jdo=S, w (A4) APPENDIX B
0 k=1 k The coefficients appearing in E¢L1) can be easily cal-
L culated by using a binomial formula. However, as there are
Ve=S sin(2kx) (A5) positive and negative contributions, the general formulas are
c K lengthy and contain many sums of sums. Therefore we pro-
vide here explicit formulas for coefficients up to order
The force for this potential reads o(y"):

1 5 7 21 33 a>y3 (), 3 15 S(w) 5
(—): _ - a2 .3 4_ 5 AT a2 _
%2 “7(“)1[1 27" 16" " 327 T 128" 256" 8 27" 8" 192 |1727)
2 7, 3, 165 ,] a?y(w) 45 S5aty*(u)
(=_2F - Y (sl L, 45 5| 5aTY (m)s
Sa 4 [(“) {1 YrgY 7 256" 4 |12t Y|t T 3ea |

3 27 55 2a%(w) 3 9 a2’y () 5
()2 AL B | il Vi) RO B el B
% " 16 :(“)1{1 27" 167 327} 3 { 27" g s |12
ay* 11 5 aty?
st )———[wn[l 2y+ 57 —2a2(m3[1—2y+§y2 —%“)S]

y® 5 15a*(w) 2
3= 256[[(m1 4a2(m3][ 54—&[ -

20a? 2
] Sgg) ay [(M)l (/1,)3_'_ (M)S],

2 457 1024 3 3
2.3 2.2 2.2
_ 3 7 5 ay (u) 15 a”y (p)
() _*7 I S | B AV ots] B B A Vi
c {(M)z[l Syt gy gy |t |15 360 |’

2472 3 1 75 @y () 85 17a*y* ()
(—):“ 4 _ = S LYy 5 02 p) 2T Y e
Ca [(“)2{1 VHEY T s |t |12 ggy” 5760 |

2.3 2.2 4.3
- 3 13, 25 a®y (u) 5 | a'yi(w)
(-2 2 a2 X XY WA, 2 ) XY e
"8 ((“)2[1 272V Y| e (Y2 T 2a0 |
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o, 3a%y 65 (g 5 a*y?(1)e
cf)=- 62 [(M)z[1—27+ﬂ7’2}— 9 1-2y+ 292 ~ 10 |’
@ L B ] @l 5 T a®y(we
Cip' = 64 ()2 PR 3 5 90 ,

) a?y® 2a? 2a*
2=~ 7072 ()2t T(Mh ﬁ(’“)e’ -
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